DANGER HIGH VOLTAGE

Motor control equipment and electronic controllers are connected to hazardous line voltage. When servicing drives and electronic controllers, there may be exposed components with their cases and protrusions at or above line potential. Extreme care should be taken to protect against shock. Stand on an insulating pad and make it a habit to use only one hand when checking components. Always work with another person in case an emergency occurs. Disconnect power whenever possible to check controllers or to perform maintenance. Be sure equipment is properly grounded. Wear safety glasses whenever working on an electronic controller or electrical rotating equipment.

CAUTION:

Rotating shafts and above ground electrical potentials can be hazardous. Therefore, it is strongly recommended that all electrical work conform to National Electrical Codes and local regulations. Installation, alignment and maintenance should be performed only by qualified personnel.

Factory recommended test procedures, included in the instruction manual, should be followed. Always disconnect electrical power before working on the unit.

REFER TO OSHA RULES AND REGULATIONS, PARAGRAPH 1910.219 FOR GUARDS ON MECHANICAL POWER TRANSMISSION APPARATUS.

Note:
Since improvements are continually being made to available equipment, the enclosed data is subject to change without notice. Any drawings are for reference only, unless certified. For additional information contact your nearest Eddy Current representative listed in the Yellow pages under "Power Transmission Equipment". Or write: DYNAMATIC Corporation, 3122 - 14th Avenue, P.O. Box 1412, Kenosha, WI 53141-4121.

IMPORTANT NOTICE

The printed contents in this manual are to be used for reference only. Due to periodic engineering design changes and the addition of modifications, this material is provided as a guide only.

Refer to the enclosed engineering drawings, which are furnished for your specific unit.

For additional information regarding contents, send your request to one of the following departments:

Instruction Material Publications Department
Operational Functions Field Service Department
Parts .. Renewal Parts Department

This notice is provided to clarify the intent of the instruction book contents and to inform our customers how to obtain appropriate technical assistance from the proper source.

©Copyright DYNAMATIC Corporation, 1997
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction to Eddy-Current Press Drives</td>
<td>2</td>
</tr>
<tr>
<td>2. Mechanical Unit Description & Construction</td>
<td>4</td>
</tr>
<tr>
<td>3. Eddy-Current Principle</td>
<td>8</td>
</tr>
<tr>
<td>4. Interrelation of Mechanical Unit to Electrical Controller</td>
<td>9</td>
</tr>
<tr>
<td>5. Preventive Maintenance</td>
<td>13</td>
</tr>
<tr>
<td>6. Troubleshooting</td>
<td>21</td>
</tr>
<tr>
<td>7. Minor Parts Replacement</td>
<td>22</td>
</tr>
<tr>
<td>8. Major Repair/Change-out of Mechanical Press Drive</td>
<td>23</td>
</tr>
</tbody>
</table>
C.E.S. Mechanical Press Drive Introduction

The C.E.S. (Constant Energy System) controller and eddy-current mechanical drive unit are applied in stamping press applications to provide the starting torque and braking action that are required without the need for physical contact between the drive shaft and the crankshaft, or the crankshaft and the holding brake until after the slide velocity is almost completely at rest. This eliminates the periodic replacement of clutch pads by removing the air actuated clutch and only utilizing the holding brake to stop movement at low slide velocity and hold slide position. The largest advantage is in regard to ability to slow the slide velocity during the cycle by reducing the clutch action and using the eddy-current brake portion of the mechanical unit to slow the slide to the desired working speed. At this point the braking action stops and the clutch portion provides the necessary driving torque through the material.

If required, upon exiting or passing the bottom of the stroke, the clutch portion could accelerate the slide to a higher rate of speed or the same rate as during the initial start of the cycle. This flexibility within the system allows for an overall greater number of parts per hour by means of a higher average rate of strokes per minute.

The unique advantages of the eddy-current press drive are:

1. Does not require a friction clutch.
2. Can provide slow down during cycle.
3. Higher production rates with slow down during drawing process.
C.E.S. Press Drive System Figure 1
Description and Numbering System

The mechanical unit is comprised of four primary parts that make up the complete unit. The clutch field and flywheel assembly, the rotor and output shaft, the brake coil assembly, and the bearings and support structure.

The physical size of the unit is identified with a series of numbers which refer to the diameter of the inner rotor assembly and the number of clutch and brake coils mounted within the package press drive. An example of this would be 49-63 and 49-42. In each case, there is a 49 inch drum (rotor assembly), and either 6 or 4 clutch coils and 3 or 2 brake coils.

Construction of "Package Press Drive"

The support structure or pedestal is of fabricated steel construction which is bolted to the sole plate. The straight-through drive shaft is supported by spherical roller bearings at each end of the shaft.

The Clutch Field and Belt Ring Assembly

This portion of the mechanical unit is mounted on bearings on the output shaft of the press drive and is driven with belts by the motor. The field coil assembly is enclosed within the outer flywheel by a number of pole faces to form an electromagnet. Energy is supplied to the clutch coils through three slip ring assemblies and brushes. Because of the designed weight and mass, the flywheel and clutch coil assembly stores a large amount of kinetic energy which may be transferred to the output shaft. The ability to store energy in this assembly creates a flywheel effect which may be tapped into at any time by providing clutch coil current and transferring that energy through the rotor assembly to the output shaft and to the press crankshaft.

The outboard end of the flywheel assembly is supported by a single roller bearing. This allows the flywheel and field assembly to rotate on the output shaft independently with regard to the rotation of the output shaft. On the inboard side of the belt ring assembly, there is a double spherical roller bearing which supports the belt ring and offsets thrust in a lateral direction by incorporating opposingly angled rollers to eliminate deflection in any direction.

The brake coil field assembly is the stationary member of the unit. It is bolted directly to output pedestal. The brake field can contain from 1 to 3 separate field coils. This assembly is used to apply braking torque to the brake rotor when slowing or stopping the slide velocity.
The clutch and brake rotor assemblies are both constructed of fabricated steel with smooth segmented outer surfaces. There are two separate assemblies which are keyed to the output shaft. The clutch and brake rotor assemblies are located within the respective fields with only an air gap between the pole faces and the rotor surfaces to separate them. This air gap allows for air to flow across the pole faces for cooling purposes and creates an area where the eddy-current field is established allowing for torque tranference without any mechanical interaction.

Since the drive shaft can be accelerated and decelerated for each press ram cycle, the weight has been minimized to curtail high inertia and reduce acceleration and braking energy requirements. Both rotors rotate at the same speed by being keyed to the output shaft. Clutch current to the mechanical unit provides the accelerating torque and current supplied to the brake coils provides braking action, but not to a complete stop. For both the clutch and brake fields to create torque, there is a minimum amount of slip or rotation that is required. This is why the output speed of the mechanical unit will never match the speed of the flywheel assembly or the brake assembly will not completely stop the press because of the need for movement (slip) to cut the electromagnet field that is created by the field assemblies.

Warning!! The eddy-current brake cannot be used as a holding brake.

Safety laws require that a mechanical holding brake be installed on all press drives to hold the press ram stationary until the succeeding ram cycle has begun. The braking capacity of this mechanical brake must be sufficient to bring the press drive shaft to a complete stop in the event of a loss of electrical power or eddy-current brake failure.

Attached to the belt ring and clutch field assembly is a slip ring assembly. It consists of three bronze rings mounted in insulating material. Since the clutch coils are physically and electrically connected to the slip rings, they rotate together. Power to the clutch coils is carried through these slip rings from brushes mounted inside the clutch pedestal. The brushes, eight for each slip ring, are positioned on opposing sides of the slip ring to ensure uninterrupted brush-to-ring contact during periods of vibration.
Typical Press Drive Cutaway (37-47 or 49-47)
Eddy-Current Principle

The eddy-current principle is used by the press drive clutch to accelerate the press drive shaft and transmit power from the clutch flywheel (belt ring assembly) to the press ram. The clutch field and rotor have no physical contact between them, except for the two support bearings. The eddy-current principle also is used in the brake section to decelerate the output shaft, which in turn transmits braking torque to the press crankshaft.

Drive motor rotation is coupled to the press ram through the electromagnetic field in the eddy-current clutch. The drive motor is not stopped or started for each ram cycle, thus allowing for continuous motor operation during press operation. The only parts that are subject to wear are the bearings, brushes, and slip rings.

Providing a dc current through either the clutch or brake coils of the mechanical unit produces an electromagnetic field within the air gap between the field assembly and the rotor assembly. As the rotor surface cuts this field, it produces attraction to the mechanism producing the field. If this happens to be the flywheel assembly in which the clutch coils are mounted, the rotor will attempt to catch up to the rotating field until the necessary speed that is requested in met. At this point, the dc current will be shut off and the attraction will stop.

If the dc current is applied to the brake field assembly, the electromagnetic field will provide torque to the rotor in the brake section. The brake field assembly is mounted to the output pedestal and is stationary. The eddy-current field provides a braking torque to the already turning rotor and will provide stopping torque.

It should be noted that the amount of torque produced in either the clutch or the brake portion of the mechanical unit is a function of the amount of excitation current presented to the coil assemblies and the amount of slip between the electromagnetic field and the attracted rotor. For this reason, the output shaft of the mechanical unit will never rotate at the same speed as the flywheel assembly. Also the brake section will not provide complete stopping torque or holding torque because of the low speed (rpm) of the rotor and its inability to cut sufficient lines of the electromagnetic field.
Relationship of the Mechanical Unit to Electrical Controller

Mechanical unit energy transference

The C.E.S. controller provides the voltage and current to the mechanical portion of the press drive package for regulating the ram velocity. The current for the clutch section is transferred to the brush and slip ring assembly to excite the field coils to provide rotating torque. The brake assembly is fixed in position, so there is no need for a set of slip rings; and the output from the controller is directly connected to the brake coil assembly.

In the beginning of a stroke, the C.E.S. controller will force current into the clutch coil. This will apply magnetic attraction from the already rotating field coil and flywheel assembly to the stationary rotor assembly which is attached to the output shaft. As the press velocity becomes equal to the required speed, the clutch coil field will be reduced and rotational torque will be reduced. As the speed increases above the desired set point, the brake field coil assembly will be energized to provide braking torque to bring the speed back to the desired operating range. This type of operation between the clutch and brake circuit is referred to as a "Mutuatrol" operation.

Tach Generator Assembly; Refer to Figures 4, 5, or 6

The tach generator assembly is located on the clutch input end of the mechanical unit. Since the eddy-current clutch is a torque transmitter, it has no inherent speed sense. The tach generator field assembly is located around the input end of the drive shaft to provide a velocity feedback to the controller. The tach field assembly is assembled in a special housing that provides an end cap for the output shaft pedestal bearing. The fields surround the output shaft. Seated on the output shaft is a magnet that rotates with shaft movement. This assembly, as depicted on the assembly drawing, is pinned to the shaft every 120 degrees around the shaft circumference for each assembly. The field windings in the assembled housing are oriented so that they are 90 degrees apart in regard to phase of the output waveform. In this particular application, only one set of the two field windings is used for feedback and the other is a spare set usually marked G5 and G6, with the main set being labeled G1 and G2.

Field Coil Assemblies for Clutch and Brake; Refer to Figures 4, 5, or 6

The clutch coils that are inside the flywheel are pressed into the outer belARING housing. Each coil is situated so that it is in series aiding, and the coils must be marked and installed in the same fashion.

The brake coils are mounted in the brake field and ring assembly and also must be installed in a series aiding configuration. The flywheel assembly is then mounted to the pedestal at the output shaft end.
Preventive Maintenance

Lubrication requirements; Refer to Figures 4, 5, 6 & 7

Lubrication is supplied to the four bearings by a forced oil system. This system may either be tied in with the press lube system or by a separate closed system. The outlet of either type of system is tied into a main inlet block.

The two end bearings that are mounted in the pedestal are fed by individual lines. The oil flows through the bearing by gravity and collects in two galleries for return through separate headers. The two clutch support bearings are lubricated through the input end of the drive shaft. Oil enters through a roto-seal feed assembly to a rifle-drilled channel through the center of the shaft to the bearings. Each bearing has its own gallery for oil return to the reservoir through two separate return lines.

Typically, the amount of oil for each bearing is 0.85 cu. in. per bearing per minute. The viscosity may be between 1000 to 1600 S.U.S. @ 110 to 115 degrees fahrenheit. Straight mineral type oil containing rust and oxidation inhibitors must be used with the minimum viscosity of 90, and a flashpoint of 470 degrees fahrenheit. Oil viscosities that are thicker may not flow properly and cause a starvation condition. If the viscosity is too thin, proper lubrication will not be maintained and bearing failure will occur. Also, the bearing seals will not be able to retain the oil, and oil consumption will be considerable. It, therefore, is required that oil guidelines be adhered to for proper oil distribution to the bearings.

In order to maintain the proper oil flow, it is necessary to position the oil drains in the pedestal bearing inner caps in the proper position to provide a gravity flow return to the press lube system. Each bearing cap may be placed in any one of four positions. The oil outlet should always be positioned at the lowest position of the cap when installed on the press. Please refer to the Press Drive Pedestal drawing (showing four positions of oil drain outlet).

Clutch and Brake End Oil Drains

If the oil drains are not in their proper position, remove the shaft end guard from the pedestal bearing outer cap on the clutch end of the press drive. Remove the pedestal bearing outer cap from the brush ring assembly on the clutch end. Remove the four socket head screws that secure the pedestal bearing inner cap to the pedestal. Refer to Pedestal Bearing Cap (Clutch End) drawing. Rotate the bearing inner cap carefully to its proper position and install the four socket head screws and reassemble the outer bearing cap and shaft cover. The brake end bearing may be changed in the same manner with the exception of the shaft end guard. Refer to Pedestal Bearing Inner Cap (Brake End) drawing. By shifting these oil drains, it will allow the press drive to be mounted in various positions to facilitate mounting restrictions and still maintain a gravity flow for oil return to the sump.
Typical Oil Piping Layout For Bearing Lubrication

ALL AIR COOLED PRESS DRIVES HAVE SIMILAR PIPING LAYOUTS

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Main oil system connector</td>
</tr>
<tr>
<td>2</td>
<td>Hose</td>
</tr>
<tr>
<td>3</td>
<td>Copper coated steel tubing (Normal output end)</td>
</tr>
<tr>
<td>4</td>
<td>Copper coated steel tubing (Oiler end)</td>
</tr>
<tr>
<td>5</td>
<td>Hose</td>
</tr>
</tbody>
</table>
Slip Ring and Brush Assembly

It is important that the slip rings and brushes be periodically inspected to prevent uninterrupted press operation.

1. Keep slip rings and brushes free of dirt, grease, oil, and any foreign particles or contaminants.
2. Clean slip rings and adjacent surfaces with compressed air and approved cleaning solvents. Buff slip rings periodically with a fine, nonconductive abrasive cloth or paper to ensure good electrical contact with brushes.
3. If the brush contact surfaces become pitted from electrical arcing or contact with abrasive materials, it will be necessary to polish the rings, using any of the accepted procedures. This should also be done if for some reason the rings become out of round, causing the brushes to jump off the slip rings during each revolution, breaking the electrical contact or at least causing severe arcing.
4. After polishing the slip rings, all metal particles should be removed from the slip ring area.
5. All brushes should be removed to check their slip ring contact area.
6. If the curvature is not correct for full contact, polish with sandpaper to maintain good current transfer without arcing. Do not use Carborundum paper.
7. Before the brushes become short and start to bind in the holder, they should be replaced.
8. Quarterly inspection of the slip rings and brushes should be performed as part of preventive maintenance.
Eddy-Current Coupling

Figure 8
Ventilation

Heat is generated in the press drive as energy is absorbed by the eddy-current clutch and brake, and as a difference in speed, or "slip," occurs between the driving and driven members of the unit. The incoming air passes over the brake and clutch rotors, absorbing the heat generated in the rotors by the eddy-currents. Vans on the rotating clutch field and flywheel assembly move the heat out of the press drive.

In the interest of safety to personnel, a safety guard must be installed around the entire rotating member and the belt linkage. It is imperative to avoid restriction of the exhaust air flow. If heated air is not allowed to exhaust from the press drive, it will become over heated and cause seizure of the rotor assembly. Therefore, it is important to employ adequate vent openings along the air exhaust flow by using screens or expanded metal (see Safety Guard drawing).
Pedestal Bearing Driver Bearing Cap (Brake End)

Figure 9

Pedestal Bearing Driver Bearing Cap (Clutch End)

Figure 10
Belts

In the event that drive belts need to be replaced, replacement may be performed without having to remove the entire mechanical unit from the press.

1. Uncouple the mechanical unit from the press gearing.
2. Remove all the air and lube line connections that are attached to the pedestal running to and from the oil supply reservoir and flywheel brake cylinders if they will interfere with placement of the belts.
3. Remove all wiring for the clutch and also for the tach generator assembly at the junction box on the pedestal.
4. Remove the return oil collection piping for the center support bearing. This would interfere with placement of the belt around the belt ring assembly.
5. Install both tie bars (refer to Figure 13) and tighten to secure the two ends of the pedestal from moving while lifting the mechanical unit off the sole plate. Lifting of the mechanical unit without the tie bars will cause twisting of the pedestals and misalignment of the clutch and brake components.
6. Remove the pedestal centering pin that is located on each corner of the mechanical unit.
7. Remove the anchoring bolt at each corner of the clutch end pedestal. Back the anchor bolts on the brake end of the pedestal out 1/16" of an inch.
8. If shims are used to align the output shaft with the press shaft make sure they stay in the proper location.
9. Attach a four-hook sling for the proper weight to the four lifting eyes on each corner of the end pedestals (refer to Figure 13).
10. Lift the mechanical unit high enough to allow the spacer plates between the clutch end pedestal foot and the sole plate to be removed.
11. Slide the belts under the pedestal and insert spacers, replacing any shims which may have been removed, and lower unit back into position. Replace centering pins and rebolt the mechanical unit to sole plate.
12. Remove the lifting sling and remove tie bars on the mechanical unit.
13. Place the v-belts in position over the belt ring assembly and in the grooves.
14. The belts should, at this point, be led out to the motor and the tie bars on the top should be replaced to support the upper portions of the pedestal during operation.
15. Reconnect the lubrication lines and air lines to the mechanical unit along with the wiring. The coupling to the press gearing should be installed and belts positioned around the motor sheave and tightened.
Inspection of Flywheel Brake Shoes

The flywheel brake shoes are used to stop the rotation of the belt ring assembly when the main motor is stopped. The shoes are made of non-asbestos type material. The wear of these shoes is a function of the number of stops over a period of time. They should be inspected as part of preventive maintenance on a quarterly basis and replaced when the shoes are worn down to the figures in Table 1.

Minimum Brake Shoe Wear

<table>
<thead>
<tr>
<th>Model No.</th>
<th>37-42</th>
<th>49-42</th>
<th>49-63</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wear</td>
<td>0.50 in.</td>
<td>0.50 in.</td>
<td>0.50 in.</td>
</tr>
</tbody>
</table>

Figure 11

Safety Guard
Troubleshooting

Bearings

All the bearings incorporated in the eddy-current mechanical unit are of the spherical roller variety. The outer pedestal bearings are double roller type with a single roller for the inner support bearing on the clutch end of the mechanical unit. A double spherical bearing is used for the center support bearing. With proper lubrication of the bearings, the wear on these bearings should be minimal for long periods of operation.

If the mechanical unit is improperly aligned the offset loading on the bearings will cause premature wear and early failure. Steps should be taken to assure that the mechanical unit has been aligned to the press crankshaft and is level with respect to the sole plate, and within 1 degree.

Vibration

During the manufacturing process, the eddy-current mechanical unit is balanced for minimal vibration. If excessive vibration is noticed during operation, the bearings should be inspected for excessive noise levels. It may also be due to improper alignment with respect to the press crankshaft. Angular misalignment should not exceed 0.005 of an inch between the two shafts.

If excessive bearing noise or vibration is noticed, please consult the text covering realignment of the output shaft and leveling of the mechanical unit.

Press Drive Pedestal (Showing Four Positions of Oil Drain Outlet) Figure 12
Repair And Minor part Replacement

Brushes

Brushes are the only parts of the system that are subjected to constant wear. They may need to be replaced on a periodic basis as their length becomes too short to allow proper alignment within the brush holder to the slip ring conducting surface. They may be removed by releasing the retaining spring on the back side of the depression arms. After retracting the arm, the brush will slide out of the slot and the copper braided wire can be loosened and removed from the terminal. Before installing the new brush, the bottom contact surface should be inspected for proper curvature. If the curvature is not proper, it may be changed with a non-carborundum paper to assure for proper current transfer. Place the brush in the holder and reset the retaining spring to the original setting. Terminate the copper braided wire on the corresponding terminal.

Thyrites

Thyrite assemblies are connected across the clutch coil and slip ring assemblies in order to protect the coil assemblies against high voltage transients. These assemblies should be kept clean and free of oil to prevent premature failure. These assemblies should be inspected on a periodic basis to assure that the epoxy has not cracked or blistered, causing contamination.

Thyrite assemblies usually consist of three protector plates isolated from each other by thyrite resistor discs. An insulated stud is positioned through the center of the assembly. A locking nut on each end of the stud holds the assembly in place on the support assembly. The protector plates are wired according to the schematic on your assembly drawing. If replacement is necessary, please refer to the instruction sheet that has been provided at the back of your instruction book. The instruction sheet for thyrite replacement is IS-000071-8100.

Installation/Replacement of Belts

Periodic inspection of belts should be performed as a part of overall preventive maintenance. The belts may display signs of fatigue, cracks, fraying, or they may have been adjusted to the furthest point of adjustment at the drive motor; then they will have to be replaced. They should always be replaced in sets to eliminate the possibility of having to perform the same task within a short time later.

A full description of the procedure of belt change-out is contained in the section covering belts.
Lifting of the Press Drive Mechanical Unit

Complete Mechanical Unit Change-out

If a failure occurs, it may be a bearing or field coil failure within the mechanical unit. The unit may be changed out by the following procedure:

1. Release the tension to the drive belts by backing off the adjustment screws or bolts at the base of the motor and moving the motor toward the mechanical unit.
2. Remove the belts from the motor sheave.
3. Disconnect all wiring to the clutch and brake coil termination points and label them accordingly. Remove the wiring to the tach generator field assembly and tag the wires accordingly.
4. Disconnect the lubrication lines to the main inlet termination block and remove the oil return lines to the reservoir.
5. Disconnect the air lines to the belt ring and flywheel assembly brake shoe cylinders mounted on the pedestal.
6. Install the tie bars on the top and bottom positions on both sides of the pedestal. This will retain the pedestal alignment and eliminate twisting while lifting the unit off the top of the press.
7. Uncouple the mechanical unit from the press drive shaft at the coupling.
8. Unbolt the sole plate from the press mounting position.
9. Move the crane into position and attach the four point lifting harness to the lifting eyes.
10. Before lifting, fasten the drive belts to the mechanical unit to eliminate the possibility of them becoming hooked on press components while moving the unit.
11. At this point, the mechanical unit may be lifted from its mounting on the press. This should be performed slowly to assure that obstacles are cleared and any unseen piping or wiring can be removed if it was missed previously.
12. Before placing the new unit on the mounting area, the area should be thoroughly cleaned of debris and the actual mounting areas be checked for gouges or scratches that will cause alignment problems.
13. Install the tie bars on the new mechanical unit and secure them in place. The drive belts should be installed on the shop floor; it will be easier there because of the restriction of space on top of the press. The belts may be replaced by unbolting the mechanical unit from the sole plate and lifting the unit up just enough to allow the belts to be slipped under the clutch end of the mechanical unit. Once in position, the sole plate and pedestal may be reconnected. The tie bars may be removed to allow the belts to be placed around the belt ring in their proper position.

14. At this point, the tie bars may be installed and the four point lifting harness attached so the mechanical unit may be lifted into position on the press.

15. The mechanical unit may be bolted into place.

16. It will be necessary to check for angular alignment and run-out between the directly connected shafts. It will also be necessary to check the pedestal for level with respect to the mounting or sole plate. The unit must be level within 1 degree of plum at any of the four corners of the pedestal. Please refer to the insert supplied with the instruction book on installation and alignment of eddy-current equipment.

17. After completion of alignment and leveling, all wiring, lubrication and air piping should be installed. The belts may be installed.

18. Before operation, the lubrication system should be started and the oil flow checked for the proper amount of oil flow to each bearing. The brake and clutch coil wiring should be checked by the electrician for the proper resistance readings according to the prints stating the size and connection configuration. The tach generator wiring should also be checked for proper wiring.

At this point, the mechanical unit is ready to be placed back into service. The press operation should yield the same tonnage and speed as the original unit. There will be no need to make any changes to the C.E.S. press drive controller.

Please feel free to address any questions you may have regarding the equipment installed in your facility. These questions may be addressed to the service department.

DYNAMATIC Corporation
3122 14th Avenue
Kenosha, WI 53141-1412
1-800-548-2169
Dynamatic

General
The purpose of these instructions is to describe the construction, installation and maintenance of the Dynamatic eddy-current press drives.

The unitized package, built and assembled by Eaton and designed for direct mounting to the press frame, either top, side or bottom drive, has either one or two variable speed extensions available for driving through flexible shaft couplings to the press linkage and the holding or safety brake. The flywheel is also a part of the complete drive and is tailored to the type of belt drive selected.

All components have been constructed for long life to assure uninterrupted press operation and with proper care as described in these instructions, the desired results will be achieved.

Excitation supply and other control components are not discussed herein.

Receiving
The complete eddy-current drive has been mounted on wood skids for shipment. Thoroughly check the unit upon receipt for any damage encountered during transportation. If it appears that there is damage, notify the carrier and Eaton immediately.

Handling
The most suitable method of handling the press drive is by use of the furnished spreader bars. Attach the spreader bars to the top of the press drive, as shown in Figure 1, and bolt a standard four hook sling to the four lifting eyes. Lifting without use of the spreader bars can cause twisting of the pedestals, thus affecting alignment.

Storage
If the drive is not going to be used immediately, leave on the skids and place in a clean dry building. For long periods of storage, protect the drive by covering completely with canvas or other protective material. Also coat all exposed unpainted surfaces to resist corrosion and rusting.

When installing the drive, if it is necessary to move from a cool to a warm, humid location, keep covered until the drive reaches the new room temperature.

Condensation may still occur; therefore, do not apply power until the drive has completely dried out.

Construction
General Description
The Dynamatic press drive utilizes the eddy-current principle to transmit and control the torque required to drive a metal working press. The press drive is essentially a combination flywheel, clutch and brake controlled electronically to regulate the speed of the press ram throughout its cycle of operation.

Drive torque is transmitted by electromagnetic attraction between the rotating members of the press drive, and braking torque by electromagnetic attraction between the driven member and a stationary brake field.

The driving member of the press drive which is the clutch field and belt ring assembly, contains a number of field coils enclosed by a series of pole faces to form an electromagnet. The clutch field and belt ring assembly is mounted on bearings on the shaft of the press drive and is driven with belts by the press motor.

The driven member, or clutch rotor, is keyed to the press drive shaft and surrounded by the field and ring assembly so that a slight air gap exists between the smooth outer surface of the rotor and the inner surfaces of the clutch field pole faces. Since the clutch rotor is the driven member of the unit and must be accelerated and decelerated for each press ram cycle, the weight of this member has been kept at a minimum to prevent high inertia and reduce the energy required for braking and acceleration.

When no current is applied to the coils of the clutch field and belt ring assembly, the field and ring assembly rotates independently of the clutch rotor and press drive shaft. As current is applied to these coils a magnetic flux is established through the pole faces of the clutch field and ring assembly and the outer face of the clutch rotor. As the field and ring assembly rotates in relation to the clutch rotor, the magnetic lines of force are broken in the air gap between the rotor and the field and ring assembly, and eddy-currents are generated in the smooth surface of the rotor assembly. The attractive

Figure 1

Dynamatic Corporation
3122 14th Avenue
Kenosha, WI 53141-1412
1-800-548-2169
The two oil drain holes are located in the pedestal bearing inner cap and can be reached through openings in the pedestals. These drain holes must always be on the vertical center line at the bottom of the cap or 180° from the oil inlet openings.

Locations other than described above will result in almost immediate bearing failure.

Oil lines to the two inlet openings in the bearing caps and two to the shaft center on the clutch end of the drive are required. A rotating type seal is necessary in the shaft end oil line. Visual type adjustable flow restrictors are recommended for the four oil lines, together with a suitable oil filter between the outlet side of the pump and the restrictors.

There are four bearings that require lubrication. The two outer, or pedestal, receive oil from the two inlets in the bearing caps and the two clutch field and flywheel support bearings receive their oil through the opening in the shaft.

Each bearing is to be supplied with a straight mineral type oil containing rust and oxidation inhibitors. A minimum flash point of 470°F, minimum viscosity index of 90, Saybolt Universal Seconds rating of 110 to 115 at 210°F, and 1600 maximum at 100°F, with a rate of flow of one cubic inch per minute per bearing, minimum to 1/4 cubic inch per bearing maximum, for a total of 4 to 6 cubic inches per minute for the four bearings.

The two oil outlet openings drain all four bearings.

Electrical

All clutch leads are brought out to slip rings mounted on the hub of the clutch field and flywheel support. The insulated brush holders have leads brought to a conduit box mounted on one of the drive pedestals. These leads are to be connected to the controller. Refer to the specific drawing furnished with the drive.

The excitation required should be checked with the controller rating to see that the correct amount is available for the drive.

Check each circuit resistance to ground. A minimum steady reading of 200,000 megohms is satisfactory.

Sometimes a coil or coils may contain a small amount of moisture, particularly after long inoperative periods. This is normally not detrimental, although it will show a low megohm reading. Apply one-quarter excitation for 4 or 5 hours and re-check.

The brake coil leads are brought out to a conduit box mounted on a pedestal. Connect these leads to the controller. Refer to the specific drawing furnished with the drive.

Positioning The Oil Drains

Reference to "Oil Piping Layout For Press Drives" should be made to determine pictorial layout of oil system.

Before the press drive is installed, make certain that the oil drains in the pedestal bearing inner caps are in the correct position to provide a gravity oil return when the press drive is placed in position on the press. Each bearing cap may be installed in any of four positions, as shown in Figure 2, so that the oil outlet is at the lowest position of the cap when the press drive is installed.

Clutch End

If the oil drains are not in their proper positions, remove the shaft end guard from the pedestal bearing outer cap on the clutch end of the press drive. Remove the pedestal bearing outer caps from the brush ring assembly on the clutch end. Remove the four socket head cap screws that secure the pedestal bearing inner cap to the pedestal. See Figure 3. Rotate the pedestal bearing inner cap carefully to their proper positions and install the four socket head cap screws and reassemble outer bearing cap and shaft cover.

CAUTION: Avoid damage to gaskets. Install the pedestal bearing outer caps, shaft end guard and brushes.

Brake End

The same procedure described for the clutch end applies to the brake end. See Figure 4.

IMPORTANT - Detach shaft guard and check generator air gap for uniformity before starting up drive.
Thyrite Replacement Instructions
Dynamatic® Eddy-Current Press Drives

Dynamatic

Purpose
This sheet provides instructions for installing replacement thyrite assemblies in Dynamatic press drives. To prevent premature failure thyrite assemblies must be protected before installation against moisture, oil, dirt and other contamination. An epoxy is available from the factory for this purpose. Follow these instructions exactly as given.

Epoxy Kit
A separate epoxy kit is required for each thyrite assembly. The kit consists of 3 ounces of resin, 0.3 ounce of activator and a brush. To order kits from the Renewal Parts Department at the factory, ask for kit number A-79520-0100. Since the resin and activator are effective for a limited time, do not use them after the expiration date recorded on them.

Description
Thyrite assemblies, which are connected across the clutch coils and slip ring assemblies, are an integral part of the thyrite and support assembly shown on your press drive assembly drawing. A typical thyrite assembly is illustrated in Figure 1. It usually consists of three protector plates isolated from each other by thyrite resistor discs. An insulated stud is positioned through the center of the assembly. A locking nut on each end of the stud holds the assembly in place on the support assembly. The protector plates, labeled A, B and C, are wired according to the schematic on your assembly drawing.

This instruction sheet applies to the following thyrite assemblies:

1. 15-000000-3745
2. 15-020415-0001
3. 15-020028-0001
4. 15-020029-0001

Thyrite Assembly Figure 1

Installation
CAUTION: Turn ac power to the press drive and controller OFF and lock it out before replacing thyrite assemblies.

Make a sketch showing which clutch coil and slip ring assembly leads are connected to each of the protector plate lugs (A, B and C) and the position of each lug. The connections should agree with the schematic on your assembly drawing. After making sure each lead is labeled (A, B or C), disconnect them from the thyrite assembly. Remove self-locking